Feststofftransport

Schwebstofftransport

N

Kontinuierliche Überwachung von Schwebstoffen

Wir verwenden Trübungssensoren zur kontinuierlichen Überwachung der Schwebstoffbelastung in Gewässern.

N

Schwebstoffmengen

Wir liefern Schätzungen der Schwebstofftransportmengen auf der Grundlage unserer Feldmessungen.

N

Modellierung von Schwebstoffen

Wir kombinieren aktuelle hydraulische und Schwebstoffmodelle, um die Schwebstoffdynamik unter verschiedenen Szenarien zu simulieren.

Geschiebetransport

N

Kontinuierliche Überwachung des Geschiebetransports

Wir verwenden akustische und seismische Sensoren, um den Geschiebetransport in Fliessgewässern kontinuierlich zu überwachen.

N

Geschiebetransportmengen

Wir liefern Schätzungen der Geschiebetransportmengen auf der Grundlage unserer Feldmessungen.

N

Geschiebetransport Modellierung

Wir kombinieren aktuelle hydraulische und  Geschiebetransportmodelle, um die Dynamik des Geschiebetransports unter verschiedenen Szenarien zu simulieren.

A

Anwendungen

  • Optimierung der Wasserkraftproduktion unter Berücksichtigung des Schwebstoffs und des Geschiebes.
  • Quantitative Beurteilung von Massnahmen zur Verbesserung des Feststofftransportregimes in Gewässern (Art. 43A GSchG).
  • Bewertung des Sedimenthaushalts von Flussbau- und Flussrenaturierungsprojekten.
  • Überschwemmungsrisiko im Zusammenhang mit Feststofftransportprozessen.

i

Ausgewählte wissenschaftliche Referenzen

  • Antoniazza, G., Dietze, M., Mancini, D., Turowski, J. M., Rickenmann, D., Nicollier, T., Boss, S. & Lane, S. N. (2023). Anatomy of an Alpine bedload transport event: A watershed-scale seismic-network perspective. Journal of Geophysical Research: Earth Surface, 128, e2022JF007000. https://doi.org/10.1029/2022JF007000
  • Lane, S. N., Gaillet, T., & Goldenschue, L. (2022). Restoring morphodynamics downstream from Alpine dams: Development of a geomorphological version of the serial discontinuity concept. Geomorphology, 402, 108131.
  • Rickenmann, D., Ammann, L., Nicollier, T., Boss, S., Fritschi, B., Antoniazza, G., Steeb, N., Chen, Z., Wyss, C., Badoux, A. (2024). Indirekte Geschiebetransportmessung, Teil 1: Vergleich von verschiedenen Messsystemen. Wasser, Energie, Luft, 116, 14-22.
  • Rickenmann, D. (2017): Bed-load transport measurements with geophones and other passive acoustic methods. Journal of Hydraulic Engineering, 60th Anniversary State-of-the-Art Reviews, 143(6), 03117004-1-14, doi: 10.1061/(ASCE)HY.1943-7900.0001300.
  • Rickenmann, D., Böckli, M., Heimann, F.U.M., Badoux, A., Turowski, J.M. (2016): Bedload transport simulation with the model sedFlow: application to mountain rivers in Switzerland. In: Koboltschnig, G. (ed) 13th Congress Interpraevent 2016. 30 May to 2 June 2016, Lucerne, Switzerland. Conference Proceedings. Living with natural risks. Luzern, International Research Society Interpraevent. 387-395. https://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2016_1_387.pdf
  • Wyss, C.R., Rickenmann, D., Fritschi, B., Turowski, J.M., Weitbrecht, V., Boes, R.M. (2016): Measuring bedload transport rates by grain-size fraction using the Swiss plate geophone signal at the Erlenbach. Journal of Hydraulic Engineering, 142(5), 04016003, doi: 10.1061/(ASCE)HY.1943-7900.0001090.

 

Kontakt

FluvialTech GmbH

Bahnhaldenstrasse 5

CH – 8052 Zürich

info@fluvialtech.ch

Copyright © 2024 FluvialTech GmbH. Alle Rechte vorbehalten